THE JOURNAL OF ANTIBIOTICS

3-DEACETOXY-7-(α-AMINO-1-CYCLOHEXENYLACETAMIDO) CEPHALOSPORANIC ACID (SCE-100), A NEW SEMISYNTHETIC CEPHALOSPORIN. II

COMPARATIVE IN VIVO ANTIBACTERIAL ACTIVITIES OF SCE-100 AND CEPHALEXIN (CEX)

TOSHIYUKI YAMAZAKI and KANJI TSUCHIYA

Central Research Division, Takeda Chemical Industries, Ltd., Osaka, Japan

(Received for publication January 16, 1976)

The protective activity of 3-deacetoxy-7-(α -amino-1-cyclohexenylacetamido) cephalosporanic acid (SCE-100) against experimental intraperitoneal infections in mice caused by several strains of Gram-positive and Gram-negative organisms, including penicillin resistant strains, was compared with that of cephalexin (CEX). Comparable protective effects by oral administration of SCE-100 and CEX were observed in mice infected with Grampositive organisms, while in mice infected with Gram-negative organisms SCE-100 was less active than CEX. SCE-100 showed a protective effect in infections of mice with either penicillin G-resistant *Staphylococcus aureus* or ampicillin-resistant *Escherichia coli*. The oral ED₅₀ of SCE-100 was similar to or slightly larger than the subcutaneous value.

3-Deacetoxy-7-(α -amino-1-cyclohexenylacetoamido) cephalosporanic acid (SCE-100) is a new semisynthetic cephalosporin, structurally analogous to cephalexin (CEX).¹⁾ SCE-100 is similar to CEX in its *in vitro* antibacterial activity against Gram-positive organisms, but has slightly less activity²⁾ against Gram-negative organisms.

In vivo antibacterial activities of SCE-100 and CEX were studied comparatively with experimental infections in mice caused by representative Gram-positive and Gram-negative organisms.

Materials and Methods

<u>Antibiotics</u>: SCE-100, CEX and aminobenzyl penicillin (AB-PC) were prpeared in Takeda Chemical Industries, Ltd. The cephalosporins were dissolved in a small volume of 5% sodium bicarbonate and diluted with distilled water for parenteral administration. For oral administration, the cephalosporins were suspended in 0.2% sodium carboxymethylcellulose and ampicillin (AB-PC) was dissolved in distilled water.

<u>Animals</u>: Four weeks old male CF_1/H mice weighing 20~22 g were used in a group of five for each dosage level.

Protective test: The following organisms, such as *Staphylococcus aureus* 308A-1, *S. aureus* No. 61 (penicillin G-resistant clinical isolate), *Streptococcus pyogenes* E-14, *Streptococcus pneumoniae* type I, *Escherichia coli* O-111, *E. coli* No. 23 (ampicillin-resistant clinical isolate), *Klebsiella pneumoniae* DT and *Proteus vulgaris* IFO 3988 were used as challenge organisms. *S. pyogenes* and *S. pneumoniae* were cultured on Trypticase soy agar (BBL) supplemented with 10% bovine blood. Other organisms were cultured in Brain Heart Infusion (Difco).

Mice were infected intraperitoneally with 0.5 ml of bacterial suspensions. S. pneumoniae was suspended in Trypticase soy broth (BBL), and other organisms were suspended in 5% hog gastric mucin. The viable units in challenge doses were approximately 10^{7} /animal for S. aureus, 10^{4} /animal for S. pyogenes, 10/animal for S. pneumoniae, 10^{8} /animal for E. coli and K. pneumoniae and 10^{5} /animal

THE JOURNAL OF ANTIBIOTICS

Mice infected with *S. pneumoniae* were treated with divided doses 3, 6 and 21 hours after infection. Mice infected with other organisms were treated with a single dose immediately after infection. Death of mice was recorded daily and the 50% effective dose (ED_{50}) was calculated from the survival rate of the animals on the 7th day after infection by the method of REED and MUENCH.³⁾

Results

Protective Effect in Gram-Positive Bacterial Infections

The ED_{50} values of SCE-100 and CEX in mice infected with *S. aureus* 308A-1, *S. pyogenes* E-14 and *S. pneumoniae* type I are shown in Tables 1, 2 and 3. SCE-100 and CEX had similar protective effects in mice infected with these Gram-positive organisms, regardless of the administration route. The oral ED_{50} was equal or slightly larger than the subcutaneous one, and the smallest ED_{50} was observed on the intraperitoneal route, except when the animals were infected with *S. pneumoniae*. Furthermore, as shown in Table 4, oral administration of SCE-100 was effective in mice infected with

Table 1. Protective effect of SCE-100 and cephalexin against *Staphylococcus aureus* 308A-1 infection in mice

Cephalosporin	SCE-100				CEX			
MIC (µg/ml)	3.13				1.56			
Administration route	SC	IP	IV	PO	SC	IP	IV	PO
	4.40	_	_		4.96	3.12	4.40	10.00
	3.12	2.47	5.25	7.02	3.41	2.40	_	
ED_{50}	_	2.69	6.25	5.58	3.63	2.62	5.25	5.00
(mg/kg)		2.47	10.87	7.76	6.25	2.26		8.86
	7.86	3.51	9.92	7.44	4.43	3.12	6.25	6.25
	7.44	_	7.86	6.25	5.04	_	6.25	9.6
Mean	5.70	2.78	8.03	6.81	4.62	2.70	5.54	7.94

Note: Mice were infected by the intraperitoneal injection of 10⁷ viable units in 5% mucin. Antibiotic was administered as a single dose immediately after challenge.

Table 2. Protective effect of SCE-100 and cephalexin against *Streptococcus pyogenes* E-14 infection in mice

Cephalosporin	SCE-100				CEX			
MIC (µg/ml)	0.39				0.78			
Administration route	SC	IP	IV	РО	SC	IP	IV	РО
ED ₅₀ (mg/kg)	0.39 0.63 1.10 0.78 0.70	0.32 0.20 0.46 0.22 0.35 0.60	0.55 0.55 1.10 0.48 0.70 0.44	1.00 1.75 2.20 1.33 1.56	0.73 0.70 1.39 0.70 0.97		0.63 1.10 2.02 1.25 1.74	1.56 1.56 2.78 1.56
Mean	0.72	0.36	0.64	1.57	0.90	0.49	1.35	1.86

Note: Mice were infected by the intraperitoneal injection of 10⁴ viable units in 5% mucin. Antibiotic was administered as a single dose immediately after challenge.

Cephalosporin		SCE-100		CEX				
MIC (µg/ml)		3.13			6.25			
Administration route	SC	IP	РО	SC	IP	РО		
	59.2	78.0	63.7		45.0	63.7		
	28.1	_				40.0		
	50.0	39.7	44.1	_		56.2		
ED_{50}	35.5	—		70.9		70.9		
(mg/kg)	38.5	62.9	42.0	84.0	80.0	89.3		
	35.7		32.5	70.4	80.0	89.3		
	40.0	35.7	35.2	89.3	44.6	80.0		
	56.2	60.2	34.5	84.0	70.9	56.2		
Mean	42.9	55.3	42.0	79.7	64.1	68.2		

Table 3. Protective effect of SCE-100 and cephalexin against *Streptococcus pneumoniae* type I infection in mice

Note: Mice were infected by the intraperitoneal injection of 10 viable units in TSB. Antibiotic was administered as three doses at 3, 6 and 21 hours after challenge. The figures indicate the ED₅₀ value as a single dose.

Table 4. Protective effect of SCE-100 and cephalexin against *Staphylococcus aureus*, penicillin G resistant and sensitive, infection in mice

Challenge organism	S. aureus No. 61*			S. aureus 308A-1**			
Antibiotics	SCE-100	CEX	AB-PC	SCE-100	CEX	AB-PC	
MIC (µg/ml)	12.5	6.25	>100	3.13	1.56	0.05	
	7.76	11.16	_	5.25	5.25	_	
	12.50	17.24	>100	3.12	3.12	1.01	
ED_{50} (mg/kg)	10.00	17.73	>100	7.02	4.40	1.33	
(1116/186)	14.94	11.16	>100	7.76	3.93	1.39	
		10.50	>100	4.46	5.25	0.55	
Mean	11.30	11.56	>100	5.52	4.39	1.07	

Note: Mice were infected by the intraperitoneal injection of 10^7 viable units in 5% mucin.

Antibiotic was administered as a single oral dose immediately after challenge.

* Penicillin G resistant.

** Penicillin G sensitive.

the clinically isolated penicillin G-resistant S. aureus No. 61. The resulting ED_{50} value was only 2 times larger than that in mice infected with penicillin G-sensitive S. aureus.

Protective Effect in Gram-Negative Bacterial Infections

The ED₅₀ values of SCE-100 and CEX in mice infected with *E. coli* O-111, *K. pneumoniae* DT and *P. vulgaris* IFO 3988 are shown in Tables 5, 6 and 7. SCE-100 was not as protective as CEX in mice infected with Gram-negative organisms, and the ED₅₀ values of this compound were 2 to 7 times larger than those of CEX. The protective effect of SCE-100 by oral administration was similar or somewhat smaller by use of other administration routes. It was further observed that SCE-100 protected mice infected with clinically isolated ampicillin-resistant *E. coli* No. 23. (Table 8).

VOL. XXIX NO. 5

Cephalosporin		SCE-100		CEX			
MIC (µg/ml)	12.5			6.25			
Administration route	SC	IP	РО	SC	IP	PO	
	_		40.0	16.2	7.0	8.2	
			17.2	5.3	10.8	8.1	
	21.6	72.5	27.9	13.9		8.9	
ED_{50} (mg/kg)	11.2	_	17.6			5.5	
(IIIg/Kg)	12.5		28.1	4.3	6.3	5.6	
	29.8	72.5	17.6	12.5	8.1	9.3	
	17.6	25.0	15.5	6.3	7.1	5.6	
Mean	18.5	56.7	23.4	9.8	7.9	7.3	

Table 5.	Protective effect	of SCE-100 and	cephalexin against	Escherichia coli O-111	infection in mice
----------	-------------------	----------------	--------------------	------------------------	-------------------

Note: Mice were infected by the intraperitoneal injection of 10³ viable units in 5% mucin. Antibiotic was administered as a single dose immediately after challenge.

Table 6.	Protective effect of SCE-100	and cephalexin against	Klebsiella pneumoniae DT	infection in mice

Cephalosporin		SCE-100		CEX			
MIC (µg/ml)		12.5		3.13			
Administration route	SC	IP	РО	SC	IP	РО	
	15.0	37.5	26.0	—	7.1	8.7	
	8.8	29.1	25.0		_	5.6	
		25.0	25.0	7.0	5.0	5.0	
ED_{50}	14.0	25.0	29.6	3.9	3.5	6.3	
(mg/kg)	6.3	_	14.0	2.8		1.9	
	9.7	9.6	25.0	3.5	_	3.1	
		35.2	32.5	8.8	6.3	9.1	
	20.0	27.9	25.0	10.1	3.9	7.4	
Mean	12.3	27.0	25.3	6.0	5.2	5.9	

Note: Mice were infected by the intraperitoneal injection of 10³ viable units in 5% mucin. Antibiotic was administered as a single dose immediately after challenge.

Table 7. Protective effect of SCE-100 and cephalexin against *Proteus vulgaris* IFO 3988 infection in mice

Cephalosporin		SCE-100		CEX			
MIC (µg/ml)	50.0			25.0			
Administration route	SC	IP	PO	SC	IP	РО	
	96.4	_	112.5	32.1	67.8	29.8	
	89.4		78.0	34.1	45.0	29.8	
ED_{50}	112.4	89.3	112.4	29.8	-	31.3	
(mg/kg)	80.0	50.0	62.1	20.0	50.0	17.6	
	62.9	85.5	89.3	25.0	37.9	18.1	
Mean	88.2	74.9	90.9	28.2	50.2	25.3	

Note: Mice were infected by the intraperitoneal injection of 10^5 viable units in 5% mucin. Antibiotic was administered as a single dose immediately after challenge.

Challenge organism	1	<i>E. coli</i> No. 23*			<i>E. coli</i> O-111**			
Antibiotics	SCE-100	CEX	AB-PC	SCE-100	CEX	AB-PC		
MIC (µg/ml)	25.0	12.5	>100	12.5	6.25	3.13		
ED ₅₀ (mg/kg)	25.0 44.6 28.0 20.0 22.3	9.61 8.86 8.80 8.80 8.56	>100 >100 >100 >100 >100 >100	22.3 21.0 20.0 16.2 12.5	8.11 5.58 8.11 4.40 4.40	20.0 22.3 25.2 15.8		
	28.0	8.93	>100	18.4	6.12	20.8		

Table 8. Protective effect of SCE-100 and cephalexin against *Escherichia coli*, ampicillin-resistant and sensitive infection in mice

Note: Mice were infected by the intraperitoneal injection of 10³ viable units in 5% mucin.

Antibiotic was administered as a single oral dose immediately after challenge.

* Ampicillin-resistant.

** Ampicillin-sensitive.

Discussion

The oral ED_{50} values of SCE-100 and CEX against infections caused by Gram-positive organisms were almost the same, irrespective of the difference of the MIC between SCE-100 and CEX. In mice infected with Gram-negative organisms, however, SCE-100 was somewhat less active than CEX, and, in general, the resulting ED_{50} values reflected the difference between the MIC values of the two cephalosporins. It was further noted that the ED_{50} values against infections with *S. aureus* and *S. pneumoniae* were significantly different, despite equal MIC-values for these two strains of bacteria.

References

- ASAKO, T.; T. SŌMA, H. MASUYA, T. HARUKAWA & T. MIKI: Jap. Patent 787,757, Sept. 9, 1975. Appl. Oct. 12, 1972
- YAMAZAKI, T. & K. TSUCHIYA: 3-Deacetoxy-7-(α-amino-1-cyclohexenylacetamido) cephalosporanic acid (SCE-100), a new semisynthetic cephalosporin. I. Comparative *in vitro* antibacterial activities of SCE-100 and cephalexin (CEX). J. Antibiotics 29: 559~565, 1976
- REED, L. J. & H. MUENCH: A simple method of estimating fifty percent endpoints. Amer. J. Hyg. 37: 493~497, 1938